Search results for " proton dynamics"

showing 2 items of 2 documents

Anomalous water dynamics in brain: a combined diffusion magnetic resonance imaging and neutron scattering investigation

2019

International audience; Water diffusion is an optimal tool for investigating the architecture of brain tissue on which modern medical diagnostic imaging techniques rely. However, intrinsic tissue heterogeneity causes systematic deviations from pure free-water diffusion behaviour. To date, numerous theoretical and empirical approaches have been proposed to explain the non-Gaussian profile of this process. The aim of this work is to shed light on the physics piloting water diffusion in brain tissue at the micrometre-to-atomic scale. Combined diffusion magnetic resonance imaging and first pioneering neutron scattering experiments on bovine brain tissue have been performed in order to probe dif…

Medical diagnosticMaterials science[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/ImagingQuantitative Biology::Tissues and OrgansPhysics::Medical PhysicsBiomedical EngineeringBiophysicsproton dynamicsBioengineeringbrain imagingNeutron scatteringBiochemistryAtomic unitsBiomaterials03 medical and health sciences0302 clinical medicineTissue heterogeneityWater dynamicsNuclear magnetic resonancemedicineAnimalsDiffusion (business)030304 developmental biologydiffusion magnetic resonance imaging0303 health sciencesProton dynamicmedicine.diagnostic_testneutron scatteringBrainWaterMagnetic resonance imagingwater diffusionLife Sciences–Physics interfaceMagnetic Resonance ImagingSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Neutron Diffraction[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/ImagingBovine brainBrain imaging; Diffusion magnetic resonance imaging; Neutron scattering; Proton dynamics; Water diffusionCattle030217 neurology & neurosurgeryBiotechnology
researchProduct

Exploring cell biodiversity - Neutron scattering investigation of water diffusion in complex system

2015

Scientists from biophysics, biology and medicine fields are interested in exploring and characterizing topologically cerebral tissue in order to diagnostic different diseases which affect brain in many patients [1-3]. One of the most diffuse diagnostic techniques is dMRI (diffusion magnetic resonance imaging) which extracts information about heterogeneity and asymmetries in brain tissue studying water diffusion dynamics (~80% mass constituent of tissues). The experimental limit of this technique is related to the acquisition time, TA, of the order of milliseconds. Water molecules diffuse within micrometre distance using TA as diffuse time (Eistein equation D~2TA). Cells have micrometric siz…

neutron scattering brain tissue proton dynamics
researchProduct